LED 照明系统自由曲面透镜设计分析

梁立君^{1,2} 牛萍娟^{1,2,3} 邢海英^{1,2,3}

1天津工业大学电子与信息工程学院,天津 300387

²天津工业大学半导体照明工程研发中心,天津 300387

³ 天津工业大学大功率半导体照明应用系统教育部工程研究中心,天津 300387

摘要 通过设计基于 LED 光源的自由曲面透镜实现均匀圆形光斑的实例,提出一种快速建立光学器件模型的方法。该方法根据几何光学和非成像光学理论建立透镜的数学方程,由 Matlab 实现透镜面型数据的数值计算,由 TracePro 编程完成透镜建模,以动态数据交换(DDE)协议为基础建立 Matlab 与 TracePro 间的会话,可在 TracePro 中自动创建透镜实体模型。仿真结果表明,光通量为 100 lm,光源尺寸 1 mm×1 mm,视角 120°的 LED 朗伯型光源 在 5 m 远处的目标面上形成半径为 3 m 的圆形光斑,光斑照度均匀性可达 0.7,透镜效率为 87%。与传统实现透镜实体模型的设计方法对比,本方法可以简化设计过程,节省设计时间,进一步证明其准确性和可靠性。

关键词 光学设计;LED 照明系统;非成像光学;动态数据交换

中图分类号 O439 文献标识码 A doi: 10.3788/LOP50.092203

Design for Freeform Surface Lens of LED Lighting System

Liang Lijun^{1,2} Niu Pingjuan^{1,2,3} Xing Haiying^{1,2,3}

¹ School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China

² Engineering Research Center of Solid State Lighting, Tianjin Polytechnic University, Tianjin 300387, China

³ Engineering Research Center of High Power Solid State Lighting Application System of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China

Abstract By the example of designing freeform lens based on LED light source to achieve uniform circular spot, a new method of establishing optical device model is proposed. According to geometrical optics and non-imaging optics theory, the mathematical model of lens is derived. Numerical calculation of lens surface data is obtained by Matlab, and by TracePro programming the lens modeling is completed, then a conversation between Matlab and TracePro is created with the dynamic data exchange (DDE) protocol. In TracePro, the lens model is automatically created. The ray-tracing simulation results reveal that, the circular spot with the radius of 3 m on the target placed 5 m away is achieved by a LED Lambertian light source which has the luminous flux of 100 lm, size of 1 mm \times 1 mm and a viewing angle of 120°. The uniformity of illumination reaches 0.7, and the lens efficiency can reach 87%. This method can simplify the design process and save time compared with conventional methods of lens entity model, which further proves its accuracy and reliability.

Key words optical design; LED lighting system; non-imaging optics; dynamic data exchange OCIS codes 220.2945; 080.4225; 080.4298

1 引 言

自由曲面灵活的空间布局和设计自由度使光学系统的结构得到简化,像质得到提高。尤其在照明光学

收稿日期: 2013-05-16; 收到修改稿日期: 2013-05-21; 网络出版日期: 2013-08-07

基金项目:国家自然科学基金(61204008)、天津市应用基础及前沿技术研究计划(10JCZDJC15400)、国家 863 计划 (2010AA03A1A7)

作者简介:梁立君(1987—),男,硕士研究生,主要从事 LED 照明系统光学设计及其应用方面的研究。

E-mail: lianglijunzpp1005@163.com

导师简介:牛萍娟(1973一),女,博士,教授,主要从事新型半导体发光器件、LED 驱动电路和半导体照明应用系统等方面的研究。E-mail: pjniu@hotmail.com

系统的设计中,自由曲面不仅可以控制光线的出光角,自由地分配光强,还可以提高光能的利用率^[1-2],极大 地满足人们对于复杂照明环境的设计需求,最终实现照明区域不同光型及光斑的均匀性,这些优点使得以 LED 为光源的照明系统具有潜在的应用前景。而 LED 照明系统设计中光学器件实体模型的获得是要首先 解决的问题,光学器件实体模型是否准确将直接影响照明系统的照明质量。目前实现自由曲面光学器件实 体模型普遍的理论设计^[3-6]过程为:1)建立光学器件数学模型;2)数值计算,迭代得到光学器件面型数据;3) 将数据导入三维(3D)建模软件(如 UG、犀牛、Solid Works 等)得到光学器件机械模型;4)将器件模型导入照 明仿真软件,并仿真模拟。本文提出以动态数据交换(DDE)协议为基础、协同使用 Matlab 和 TracePro 快速 建立透镜实体模型的方法,该方法能够实现上述步骤 2)到 4)的直接过渡,不需要步骤 3)中数据的导入建模 和机械模型的导出,从而简化了设计过程,提高了工作效率。通过模拟仿真实验证明了该方法的准确性和可 靠性。

2 Matlab 和 TracePro 之间 DDE 会话实现透镜实体建模

2.1 自由曲面光学透镜数学建模

LED 光源的发光特性为近朗伯型并且是旋转对称的,其配光曲线满足

式中 I_0 是 LED 法向的光强, φ 是光源发出的光线与光源 平面法向的夹角即出光角, m 值由 LED 光源的半值角确 定。目前的半导体技术可以将 LED 发光芯片尺寸设计 的很小, 所以在设计中把 LED 看作点光源来降低设计难 度, 如图 1 所示^[7-8]。设 LED 光源的一条出射光线与透 镜的交点为 A(x, y), 光线折射后出射到目标面上的 $B(x_R, H)$ 点, 折射光线与水平夹角为 θ , 透镜折射率为 n。

首先建立透镜曲面的切平面方程,由折射定律和三 角函数关系知,

$$n^{2} = \frac{\sin^{2}\beta}{\sin^{2}\alpha} = \frac{\frac{\tan^{2}\beta}{1+\tan^{2}\beta}}{\frac{\tan^{2}\alpha}{1+\tan^{2}\alpha}} = \frac{\tan^{2}\beta}{\tan^{2}\alpha} \times \frac{1+\tan^{2}\alpha}{1+\tan^{2}\beta}, \quad (2)$$

式中 α 、 β 分别为入射光线和折射光线与法线的夹角。由图1可知,入射光线的斜率为 tan $\left(\frac{\pi}{2} - \varphi\right) = \cot \varphi$,出射光线的斜率为 tan θ ,并设法线斜率为 k,根据两直线夹角的正切形式得

$$n^{2} = \frac{(\tan\theta - k)^{2}}{(\cot\varphi - k)^{2}} \times \frac{(k\cot\varphi + 1)^{2} + (\cot\varphi - k)^{2}}{(k\tan\theta + 1)^{2} + (\tan\theta - k)^{2}} = \frac{(\tan\theta - k)^{2}}{(\cot\varphi - k)^{2}} \times \frac{1 + \cot^{2}\varphi}{1 + \tan^{2}\theta}.$$
(3)

解得法线斜率为

$$k = \frac{n\cos\varphi - \sin\theta}{n\sin\varphi - \cos\theta}.$$
(4)

根据两条直线垂直且在斜率不为零时满足 k1×k2=-1,那么透镜曲面在 A 点处的斜率为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{k} = -\frac{n\sin\varphi - \cos\theta}{n\cos\varphi - \sin\theta}.$$
(5)

其次建立光源与目标面的能量映射关系^[9]。定义初始边界条件,设出光角 $\varphi = 0^{\circ}$ 时,光线折射到目标 面光斑半径 $x_R = 0 \pm , \varphi_{max}$ 的光线折射到照明区域最大光斑半径 $x_{R max}$ 处。引入光通量守恒建立 LED 光源出 光角 φ 与目标面形成的圆形光斑半径 x_R 间的关系:

$$E_{\pi} x_R^2 = \frac{2\pi I_0}{m+1} (1 - \cos^{m+1} \varphi), \qquad (6)$$

式中 E 为目标面的照度值。根据边缘光线理论^[10],当 LED 光源的光线出光角最大值为 g_{max}时,对应目标面 上的光斑半径最大为 x_{R max},因此有

$$E_{\pi} x_{R_{\max}}^2 = \frac{2\pi I_0}{m+1} (1 - \cos^{m+1} \varphi_{\max}).$$
⁽⁷⁾

联立(6)、(7)式得出光角 φ 与目标面光斑半径 x_R 间的关系:

$$x_{R} = x_{R \max} \sqrt{\frac{1 - \cos^{m+1}\varphi}{1 - \cos^{m+1}\varphi_{\max}}}.$$
(8)

最后迭代求解透镜面型数据。将 LED 光源的出光角[φ_0 , φ_{max}] 区间以步长 h 划分为 N 个等区间,对应于目标 面上的[x_{R0} , x_{Rmax}]。设出光角 φ_0 的光线入射到透镜的初始坐标点 $A_0(x_0, y_0)$,经透镜折射至目标面上的点 $B_0(x_{R0}, H)$,通过(5)式可以求出 A_0 点的切平面 T_0 ;当出光角为 φ_1 的光线经透镜 $A_1(x_1, y_1)$ 点时,可以认为 点 A_1 就落在切平面 T_0 上,对应光线折射至目标面上的 $B_1(x_{R1}, H)$,由(5)式可以求得切平面 T_1 。根据上述 步骤,可以求得离散数据点 A_0 , A_1 , A_2 ,…, A_{max} ,迭代后即得到该自由曲面透镜轮廓曲线的面型数据,然后 由 Matlab 编程实现数值计算^[11]。

2.2 DDE 会话创建透镜实体

2.2.1 DDE协议的基本原理

DDE 是 Microsoft Windows 提供的三种内部通讯机制之一,是基于 Windows 消息的协议,它以共享全局内存的方式实现 Windows 应用程序之间的数据交换和命令调用,以协议来同步数据的传输^[12-13]。DDE 的实现需要一个提供数据、执行命令的服务器和一个获取数据的客户端共同参与一个对话,服务器和客户端通过相互传递 DDE 消息以应答的方式实现数据传输的双向流动。在通信时,由客户端初始化 DDE 会话,并传播一条消息给当前 Windows 运行的所有程序,这条消息指明了客户端所需要的一般数据,主要包括应用程序名(或服务名)、主题名和项目名,而拥有这些数据的服务器就可以响应这条消息,此时,就建立了 DDE 会话。每次 DDE 会话由应用程序名和主题名唯一确定。目前 Windows 下的大多数软件都支持 DDE 通讯协议。

2.2.2 Matlab 与 TracePro 的 DDE 通信

Matlab 7.11-R2010b 中 DDE 客户端模块提供了 7 个基本的 DDE 函数^[14],以支持它的应用程序以客户 方式与服务器通信,这些函数的基本功能如表 1 所示。

表 1 Matlab 中的 DDE 基本函数及其基本功能

DDE function	Basic functionality
ddeinit	Initiate a conversation between the Matlab client and server application programs
ddeexec	Send a string to the server, which is expected to process the string as a series of commands
ddeadv	Establish a permanent data link between Matlab and a server
ddeunadv	Terminate a permanent data link between Matlab and server application
ddereq	Request the server application to provide data
ddepoke	Send a data from Matlab to server application
ddeterm	Terminate a conversation between Matlab and other server application

|--|

TracePro 是一套仿真 3D 视觉与立体照明模拟软件,以固体模型绘图软件(ACIS)为核心,通过 ACIS 建 立几何模型,选择与 ACIS 一样的 scheme 语言为其巨集(计算机术语)指令,scheme 是一种静态作用域的程 序设计语言,它对变量的每一次使用都对应于该变量在词法上的一个明显的绑定,并且 scheme 的实现必须 支持严格的尾递归,scheme 语言同样支持 DDE 通讯协议。在本文中 Matlab 作为客户端利用上述方法实现 透镜面型数据的数值计算,TracePro 作为服务器利用 Matlab 数值计算得到的透镜数据变量通过 TracePro 软件下的 Macro-scheme 语言完成透镜编程建模。图 2 所示为 Matlab 与 TracePro 的基本通信过程。

应用上述方法和基本函数,设定设计目标:透镜材质为聚甲基丙烯酸甲酯(PMMA),其折射率为 1.4935,透镜厚度为 5 mm,m=1即 LED 朗伯型光源的视角为 120°,LED 最大出光角 $\varphi_{max}=90°$,在 H=5 m 远处的目标面接收屏上得到半径 $x_{Rmax}=3$ m 的圆形均匀光斑。编写 M 文件,在 Matlab 下运行该 M 文件,即实现了 Matlab 与 TracePro 间的通信,TracePro 中会自动生成透镜实体。图 3 所示为 DDE 会话实现的透镜实体。

图 2 Matlab 与 TracePro 的 DDE 通信基本过程示意图

Fig. 2 Schematic diagram of DDE conversation basic process of Matlab and TracePro

图 3 TracePro 中透镜实体模型与 Matlab 画出的透镜轮廓曲线 Fig. 3 Lens entity model in TracePro and its profile in Matlab

3 模拟仿真

设定 LED 朗伯型光源尺寸为1 mm×1 mm,光通量为100 lm,目标面半径为3 m,对该光学系统追迹50 万条光线,设置 TracePro 仿真软件照度图选项下 No. of pixels 值为90,坎德拉选项下 smoothing 值为90, 仿真结果如图4 所示。

分析图 4(c)可知,光斑半径接近 3 m,照度均匀性(即平均值与最大值之比)为 0.70785,透镜效率为 87.194%。对比设计目标,该光学系统能很好地达到要求。光斑边缘部分的照度低于中间部分而且透镜效 率略低,这是由于 LED 光源的近朗伯型发光特性且设计时将其看作点光源,出光角接近 90°,出射光线未能 全部达到目标接收面所致,这部分光线不易控制,参考文献[4,6,15]中得到的模拟结果照度图中同样存在类 似的问题。此外实验已经证明对于 PMMA 材料,在厚度为 3 mm 时透光率在 92%左右,本设计中透镜厚度 为 5 mm。

下面使用常规光学器件建立方法实现透镜实体建模。把 Matlab 求解的坐标点导入 Solid Works 里建 立透镜的机械模型,如图 5 所示。保存模型为 TracePro 软件识别的格式,将模型导入 TracePro 并设置与上 述完全相同的实验参数,仿真结果如图 6 所示。分析图 6(c)可知,5 m 远的目标面上得到的光斑半径也接近 3 m,照度均匀性为 0.70534,透镜效率为 87.209%。与图 4 对比可知两种方法得到的透镜仿真结果十分 接近。

图 4 本文方法仿真结果。(a)全彩图;(b)极坐标配光曲线;(c)照度图

Fig. 4 Simulation results with the proposed method. (a) True color map; (b) polar candela distribution plot; (c) irradiance map

图 5 (a) Solid Works 中透镜 3D 机械模型; (b) Matlab 透镜轮廓曲线 Fig. 5 (a) 3D entity model of lens in Solid Works; (b) lens contour curve in Matlab

4 结 论

提出了 LED 照明系统光学器件实体模型的实现方法,即利用 DDE 函数协同 Matlab 数值计算透镜面型 数据和 TracePro 完成透镜编程建模,实现光学模型的快速导入、定义和修改。通过图 4 仿真结果可知该方 法能较好地完成设计目标。对比常规设计方法,由图 6 可知两种方法得到的透镜仿真结果十分接近,进一步 验证通过 DDE 协议实现 Matlab 与 TracePro 语言对接,自动在 TracePro 中创建透镜实体模型方法的准确 性和可靠性,不仅可以简化常规设计中获得光学器件实体模型的过程,还可以节约设计时间,提高工作效率,

图 6 常规方法仿真结果。(a)全彩图;(b)极坐标配光曲线;(c)照度图 Fig. 6 Simulation results with conventional method. (a) True color map; (b) polar candela distribution plot; (c) illuminance map

为 LED 照明系统光学器件的设计实现提供了一种新方法。研究还表明,当需要对透镜实体做微调修改时自动建模的方法可以直接实现,与常规实体建模方法相比在时间和工作量上显示出极大的优势。

参考文献

- 1 H Ries, J Muschaweck. Tailoring freeform optical surfaces [J]. J Opt Soc Am A, 2002, 19(3): 590-595.
- 2 Zheng Zhenrong, Hao Xiang, Liu Xu. Freeform surface lens for LED uniform illumination [J]. Appl Opt, 2009, 48(35): 6627-6634.
- 3 H Chase. Optical design with rotationally symmetric NURBS [C]. SPIE, 2002, 4832: 10-24.
- 4 Ding Yi, Gu Peifu. Freeform reflector for uniform illumination [J]. Acta Optica Sinica, 2007, 27(3): 540-544.

丁 毅,顾培夫.实现均匀照明的自由曲面反射器 [J].光学学报,2007,27(3):540-544.

- 5 J Bortz, N Shatz, D Pitou. Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target [C]. SPIE, 2000, 4092:130-138.
- 6 Ding Shushu, Yu Guiying, Hao Wenwen. Afreeform surface lens for indoor uniform illumination [J]. Laser & Optoelectronics Progress, 2012, 49(4): 042201.

丁纾姝,于桂英,郝雯雯. 用于室内照明的自由曲面均匀配光透镜设计[J]. 激光与光电子学进展, 2012, 49(4): 042201. 7 R Winston, J C Minano, P Benitez. Nonimaging Optics [M]. New York: Elsevier, 2001.

- 8 Tai W, Schwarte I. Design of an aspherical lens to generate a homogenous irradiance for three-dimensional sensors with a light emitting-diode source [J]. Appl Opt, 2000, 39(31): 5801-5805.
- 9 Yan Xingtao, Yang Jianfeng, Zhang Guoqi, *et al.*. Freeform LED lens design based on longitude-latitude division and tangent-plane iteration [J]. Laser & Optoelectronics Progress, 2011, 48(2): 022201.

闫兴涛,杨建峰,张国琦,等.基于经纬划分和切面迭代的自由曲面 LED 透镜设计[J]. 激光与光电子学进展,2011,48 (2):022201.

- 10 H Ries, A Rabble. Edge-ray principle of nonimaging optics [J]. J Opt Soc Am A, 1994, 11(10): 2627-2632.
- 11 R H Simons, A R Bean. Lighting Engineering Applied Calculations [M]. Oxford: Architectural Press, 2001.
- 12 Wood L. Navigating Windows's dynamic data exchange [J]. Datamation, 1991, 37(9): 51-54.
- 13 Cheng Tiegao, Jin Shangfeng. Program Design of Windows Dynamic Data Exchange [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2011.

程铁皋,金上风. Windows 动态数据交换程序设计[M]. 北京:北京航空航天大学出版社, 2011.

14 Liu Zhijian. Matlab Application Program Interface Guide [M]. Beijing: Science Press, 2000.

刘志俭. Matlab 应用程序接口用户指南[M]. 北京:科学出版社, 2000.

15 Li Lin, Wang Guangzhen, Wang Lili, *et al.*. Lens design for uniform illumination with LED [J]. Acta Optica Sinica, 2012, 32(2): 0222002.

李 林, 王光珍, 王丽莉, 等. 实现均匀照明的 LED 系统设计方法[J]. 光学学报, 2012, 32(2): 0222002.